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Efficient transition path sampling for nonequilibrium stochastic dynamics

Gavin E. Crooks and David Chandler
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
(Received 11 December 2000; published 19 July 2001

The transition path sampling methodology is adapted to the efficient sampling of large fluctuations in
nonequilibrium systems evolving according to Langevin's equations of motion. This technique is used to
simulate the behavior of the bistable Maier-Stein system at noise intensities much lower than those previously
possible.
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Recently, approximate theories have been developed thatader. Of primary interest are the rare transitions between
describe large, rare fluctuations in systems with Langevirihe stable states. For weak noise, almost all transitions
dynamics that have been driven from equilibrium by a time-closely follow the optimal trajectory, the most probable exit
dependent or nongradiefite., not the gradient of a poten- path (MPEP (see Fig. 2 There are extensive theoretical
tial) force field[1-8]. These theories are only good approxi- predictions[7,19] and simulation result$17-19 for this
mations in the zero noise limit, and computer simulations aresystem against which the algorithms developed in this paper
needed to explore the behavior of the system and the accean be tested.
racy of the approximations at finite noise intensities. How- Exploring the weak noise behavior of these systems has
ever, the straightforward simulation of the dynamics is inherpushed conventional simulation techniques to their limits,
ently inefficient, since the majority of the computation time even for the very simple, low-dimensional dynamics so far
is taken watching small, uninteresting fluctuations about theonsidered. A single, very long trajectory is generated, and
stable states, rather than the interesting and rare excursionse is obliged to wait for interesting events to occur. There-
away from those states. Transition path sampJ#gl3] has fore, it is desirable to construct a simulation that runs as
been developed as a Monte Carlo importance sampling ajuickly as possible. The very fastest simulations utilize an
trajectories that can efficiently harvest rare transitions beanalog electronic model of the system of interest, which is
tween stable or metastable states in equilibrium systemshen driven by a zero-mean quasiwhite-noise generator
Only trajectories that undergo the desired transition in a shofftL7,20. Another approach has been to optimize the speed of
time are sampled. In this paper, transition path sampling ishe pseudorandom number generdit], since this compu-
adapted to nonequilibrium, dissipative, stochastic dynamicgational effort often dominates the total simulation time for
The principle innovation is the development of a new algo-simple stochastic dynamics. However, such simulations can-
rithm to generate trial trajectories. not incorporate any importance sampling of interesting

The high-friction limit of Langevin’s equations of motion events. The total simulation time necessarily increases with
describe overdamped Brownian motion in a force field the rarity of the event under study, which typically increases

exponentially as the noise intensity decreases.
()

The transition path sampling methodology has been de-
veloped to efficiently sample rare events in equilibrium sys-

The state of the system is specified by the vectoiThe

system is subjected to a systematic foF{e,t), and a sto-
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chastic forceg(t), resulting froms-function-correlated white oar \/

noise with variances saf
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In this paper we are interested in systems that are not ir e
equilibrium, either because the force fidi¢ix,t) is time de- I ;\\
pendent, or because it is nongradient. Dynamics of this clas: = - s o o5 2
can model a large range of interesting problems, including *
chemical reactiongl4], thermal ratchet§l5], and computer FIG. 1. The potential-energy surface of the Maier-Stein system,
networks[16]. As a particular example, we adopt the follow- Eq. (3), with «=1 andu=1. Darker shading indicates lower en-
ing two-dimensional systerfx=(x,y)] proposed by Maier ergies. Note the stable states at,0), the transition state at (0,0),
and Stein4], namely, and the surface dividing the stable stafdse separatrixat x=0.
These general features persist for the other values of the parameters
used in this paper, although the force field is no longer the gradient
of a potential energy. For this equilibrium system the most probable

xi=fi(x,0)+&(1).
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This field is not the gradient of a potential energy unlass
=u. The potential-energy surface for the gradient field

path connecting the stable statesid therefore the path that domi-
nates transitions in the weak noise limitins directly along the

=u=1, is shown in Fig. 1, which should serve to orient theaxis.
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0.4 Although effective[23], the local algorithm suffers from
several deficiencies, the most serious of which is that the
relaxation time of the path scales lad whereL is the total
number of time step24]. The Maier-Stein system requires
on the order of thousands of time steps to make the large,
rare excursions away from the stable states that are of inter-
est, which renders the local algorithm impractical.

Several simple and efficient methods of generating trial
trajectorieshooting and shifting10]) have been developed
for equilibrium dynamics. Unfortunately, they are not di-
rectly applicable to nonequilibrium dynamics, since they as-
sume a knowledge of the initial state probability. Statistical
mechanics provides simple expressions for equilibrium prob-
abilities, but no such simple expression exists for nonequi-
librium steady states.

) . o Fortunately, there is an alternative representation of a sto-

FIG. 2. Arepresentative sample of exit pafttsn lines forthe  chastic path that admits a simple and efficient path sampling
Maier-Stein system witlr=6.67, u=1.0, ande=0.005, generated 5150rithm. A stochastic trajectory can be defined by the chain
from a path sampllng_5|mulat|on. These_ traj_ectorles cluster aroungf states that the system visits, but it can also be represented
the most probablg exit patt#IPEP'y .(th'Ck lines. Th.e. MPEP's by the initial state and the set of random numbers, the noise
were calculated via simulated annealing of the transition paths. history, that was used to generate the trajectory. The prob-

tems. The main innovation is to sample path space directl)z/ib'“ty of the path can then be written as

using a Monte Carlo algorithm; instead of passively waiting
for the dynamics to generate an interesting trajectory, a Mar-
kov chain linking different trajectories is constructed, each P[x]=p(x(0))£[0 \/Z—meXp{_S(t)Z/Z'E}' ©
member of which incorporates the event of interest. This

path ensemble Monte Carlo is completely analogous to con- ) )

ventional Monte Carlo algorithms acting on configurationalWhere eact is a Gaussian random number of zero mean and
change in the previous trajectory; it is immediately rejectedmally generate a stochastic trajectory from a set of random
if the desired boundary conditions are not rttgpically that ~ numbers, and not random numbers from a trajectory.

y

L-1

the path starts in region A and ends in regiop 8nd it is Suppose that we have the initial state and the noise history
accepted with a probability that generates the correct distriof @ relatively short path that undergoes the rare event in
butions of trajectories. which we are interestedWe will return to the problem of

Unfortunately, the standard methods for efficiently sam-creating this initial path shortlyA trial path can be created
pling path space cannot be directly applied to nonequilibriunPy replacing the noise at a randomly chosen time step with a
Langevin dynamics. Perhaps the most obvious method foreW set of Gaussian random numbers. This trial trajectory is
generating new trajectories in a stochastic dynamics is th@ccepted as a new member of the Markov chain of paths if it
local algorithm[22]. The path is represented by a chain of still undergoes the event of interest. The noise histories of the

statesx=[x(0),x(1), ... x(L)], and the probability of the accepted paths become correlated in time due to this con-
path, P[], is written as a product of single time step transi- Straint. Since high-friction Langevin dynamics is highly dis-
tion probabilities,P[x(t) —x(t+1)]; sipative, nearby trajectories converge rapidly, and a small
change in the noise generally produces a small change in the
L-1 trajectory. Therefore, most trial trajectories are accepted.
7?[x]=p(x(0))]_[O P[x(t)—x(t+1)]. (4) Only rarely does the change in the noise produce a path that
t=

no longer executes the event under study.

This noise sampling algorithm does not suffer from the
poor scaling of relaxation time with path length that renders
the local algorithm impractical, since a local move in noise
space induces a small but nonlocal move in path space. Con-
sider, for a moment, an unconstrained path. Then every
change in the noise history is accepted. Afty{l.) moves,

. , almost all of the random numbers used to generate the path
1’73[)( IPgerd X" —X) , (5) Wil have been replaced, and an entirely new path will have
PIX]Pged Xx—X") been generated, one that is uncorrelated with the previous
path. Generating a trial trajectory from the noise history is
which ensures a correctly weighted ensemble of paths. Heregery fast since the random numbers needed to generate the
Pgen is the probability of generating the trial configurations path have already been created and stored. The amount of

x'. information that must be stored scales with the number of

Here, p(x(0)) is the probability of the initial state of the
path. A trial trajectoryx’ is generated by changing the con-
figuration at a single time slice, it is immediately rejected if
the desired boundary conditions are not fulfilled, and it is
accepted with the Metropolis probability,

Pacd X—X")=min
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FIG. 4. Exit location distributions for the Maier-Stein system
with =10, ©=0.67, ande=0.04 (O) or 0.005 @). Symbols are

FIG. 3. Exit location distributions for the Maier-Stein SyStem averages from path Samp“ng S|mu|at|qﬂg_92 Samp'@sand lines
with @=6.67, ©=2.0, ande=0.05 (©), 0.01 (J), or 0.005 @).  are the symmetrized Weibull distributionP(y)=|y|®~*
Symbols are averages from a path sampling simulat®h92 x exp(—|y/A?*/€) (Refs.[7,19). The parameteA~1 is deter-

samples and lines are the theoretical prediction®(y)  mined from the behavior of the most probable exit path near the
xexp(—2y’/e) (Refs.[7,18)). saddle pointy =+ Ax*.

time steps, but this is a trivial amount of memory for the

low-dimensional systems considered here. final state is largely insensitive to the initial state, and there-
Unlike the local path sampling algorithm, sampling the fore that this trial move is often accepted, even if the change

noise history allows a choice of methods for integrating thein the initial state is large. Alternatively, the initial state can

dynamics. For compatibility with previous digital simula- simply be fixed at some representative point of the steady-

tions [25] we used the second-order Runge-Kutta methodstate ensemble. The simulation results will not be altered if

Compared to a simple finite difference equation, this integrane trajectory is significantly longer than the relaxation time
tor is more stable and allows longer time steps. The maxipf the system.

mum total time of the trajectories was=16, with a time
step of At=1/512, for a total of 8192 time slices. This time
step is small enough to ensure better than 90% trial mov
acceptance rate at any one time slice for the noise intensiti
studied. It requires approximayel s of CPUtime to gener-
ate a statistically independent path. Unlike simulati@digi-

Figure 2 shows several representative trajectories that
carry the system from the stable region around (1,0) to the
geparatrix ak=0. Foru=1.0 anda>4 the set of exit paths
Eiﬁfurcates[3,5]. Instead of following thex axis to the transi-
tion state, trajectories instead make large excursions away
tal or analog without importance sampling, these simulation from the axis, and approach the tranS|t|on.state frqm the top-
times are largely independent of the noise intenéftere is  ©' Pottom-right quadrants. For weak noise, a single path
a logarithmic increase of the transition time with decreasingfampl'ng simulation of this system would lock into either the
noise [21], which would eventually require longer paths. ©P Of bottom set of trajectorlefs and equilibration in pat_h
The smallest noise intensities used to generate trajectories fipace would be very slow. This is analogous to the behavior
this paper are typically an order of magnitude smaller tharPf glasses and procedures developed to study such systems
the smallest values that can be practically studied with aigould be used to aid path sampling. For the current system
analog simulation. this is not an issue, since this bifurcation is known to exist

An initial path can be generated using the following pro-and the paths are symmetric about thaxis.
cedure. The initial point of the path is fixed, an entirely ran-  The finite noise trajectories cluster around the most prob-
dom initial noise history is generated, and the end point ofible exit paths, which are the transition paths in the zero
the corresponding trajectory is computed. A small change igioise limit. These can be calculated directly from theory, but
then made in the noise history, and this move is accepteliere they were generated via gradually annealing the system
only if the new end point of the trajectory is closer to the to very weak noise intensitieg € 10~ °), which is analogous
desired final region than the previous path. In this manner thto the path quench used in RgL0]. The acceptance rate for
final point of the trajectory can be dragged into the desiregarts of the path approached 0% et 0.0005, effectively
region, and a valid initial path obtained. It is then necessaryreezing the trajectory in place. This represents the lower
to relax this initial path so that the correct transition pathnoise limit for the current implementation. To study weaker
ensemble is generated. noise it would be necessary to use smaller time stejsch

A separate Monte Carlo move is used to sample the initiawould increase the total number of time slices smaller
configuration. A trial configuration is selected from an en-changes in the noise.
tirely separate, nonpath sampling simulation that has been There are a variety of predictions regarding the distribu-
relaxed to the steady state. A long trajectory ensures that théon of exit locationd 7,19, the point on they axis where the
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transition path first crosses from one stable state to the othethis very low noise intensity, the agreement between theory
Figure 3 shows path sampling simulation results and theore&nd simulation remains unsatisfactory.
ical predictions for parameters where it is known that the

theoretical predictions are accurate. Excellent agreement iasnd P. V. E. McClintock for their helpful correspondence
observed, validating the path sampling algorithm. Finally,ang for providing example code for a conventional simula-
Fig. 4 displays exit location distributions and theoretical pre+jon of the Maier-Stein system. This work was initiated with
dictions for parameters where the agreement between the twgpport from the National Science Foundation under Grant
is known to be poof19]. Path sampling was used to study No. CHE-0078458, and completed with support from the
the exit location distribution at a noise intensity approxi-U.S. Department of Energy, Basic Energy Sciences Grant
mately 10 times smaller than previously possible. Even aNo. FDDE-FG03-99ER14987.
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